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[ABSTRACT & KEYWORDS -  Font – Times New Roman, Font Size 11] 

Abstract 
Landfill leachate containing heavy metals was subjected to anaerobic treatment by using 

an up-flow anaerobic sludge blanket (UASB) reactor combined with recyclable uniform beads 

(RUB) of seaweed species of Gracilaria. During the treatment of leachate without the RUB, the 

organic loading rate (OLR) was increased in stages from 0.125 - 0.833 kgCOD m-3d-1 and further 

increased to 2.50 kgCODm-3d-1 by reducing the hydraulic retention time (HRT) from 4 - 1 d. 

Results showed that the COD removal efficiency declined from 65.70% to 9.33% when the OLR 

was increased from 0.125 - 2.50 kgCODm-3d-1. The removal of Cadmium (Cd), Nickle (Ni) and 

Iron (Fe) was almost constant, regardless of the OLR [around Cd (36%), Ni (32%) and Fe (29%)]. 

However, when the leachate was treated with UASB + RUB, a complete removal (100%) of Cd, 

Ni, and Fe was witnessed. Fourier Transform Infrared Spectrometer (FTIR) spectra of RUB pre 

and post leachate treatment indicated clearly that RUB was the major component that worked to 

remove the heavy metals. The functional groups that were responsible for the removal of heavy 

metals were hydroxide (O-H), amine (N-H), carboxylic (C=O), amide (N=O), sulfinyl (S=O) and 

sulphides (C=S).  

 
Keywords: recyclable uniform beads (RUB), seaweed extract, up-flow anaerobic sludge blanket 

(UASB), landfill leachate, heavy metals, Gracilaria sp. 
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1. Introduction  

Landfilling is the primary method of waste disposal in developed and developing 

countries [1]. Although this method has numerous benefits, one of its disadvantages is 

leachate production, which must be properly managed. Without proper treatment, landfill 

leachate will greatly increase water pollution as it can penetrate   through soil and subsoil. 

Leachate contains water, organic and inorganic chemical substances as well as 

recalcitrant chemicals, for instance, excessive phosphate, nitrates and metal salts, 

including heavy metals [2]. Heavy metals, such as cadmium (Cd), chromium (Cr), copper 

(Cu), lead (Pb), nickel (Ni) zinc (Zn) and iron (Fe) are common heavy metals found in 

leachate [3]. The main sources contributing to the presence of heavy metals are typical 

home appliances, such as fluorescent tubes, garden pesticides, batteries, waste oil, paint 

and electronic waste [4].  Heavy metals may be potentially phytotoxic and pose a threat 

to animals and humans health via the food chain.  

Heavy metals and other toxic compounds are removed during the final treatment 

process in the landfill. Current leachate treatment options include recycling, on-site 

treatment, biological treatment, chemical oxidation and discharge to a municipal water 

treatment facility, or a combination of the above. However, biological treatment is still 

widely used in landfill leachate treatment. In this regard, the UASB is intensively 

researched for landfill leachate treatment. One of the problems during treatment by using 

UASB is the inhibition of the biological treatment of toxic compounds found in leachate 

such as heavy metals. Accordingly, the present study investigates the landfill leachate 

treatment by combining the UASB with naturally found seaweed for process 

optimisation. 

Seaweeds, widely known as macroalgae, are predecessors of all terrestrial plants. The 

macroalgae can be divided into three major categories: brown macroalgae, green 

macroalgae and red macroalgae. Seaweeds lack structures such as roots and leaves which 

are typical of terrestrial plants. Thus, seaweed does not utilise nutrients in the same way 

as terrestrial plants do. Seaweeds have a root-like structure called holdfast, which serves 

to attach the seaweed to substrates [5]. The rest of the seaweed structure is called thallus. 

The thallus contains pigments for photosynthesis. Since seaweeds lack roots for nutrient 

uptake, the thallus or thalli are used to obtain nutrients from the surrounding waters by 

diffusion and active transport [6]. This particular feature of seaweed allows it to absorb 

nutrients in the form of salts and metals, which are available in seawater. Abdel-Raouf et 

al. [7] reported that seaweed, in its natural and extracted form, is able to absorb heavy 

metals from synthetic wastewater and metallurgy wastewater. Naturally found seaweed 

provides an attractive and cost-effective solution for heavy metals removal from landfill 

leachate. The red seaweed (Gracilaria sp.) mainly constitutes polysaccharide agarose and 

carrageenan; thus, it has a high potential for heavy metals accumulation. Metal ion uptake 

by biomass occurs through interaction with the cell walls. This is due to the presence of 

various functional groups, such as carboxyl, amino, sulphate and hydroxyl groups, which 

act as binding agents, and involve ionic interactions and complex formations between 

metal cations and ligands on the surface of the seaweeds. 

This study aims to optimise the anaerobic treatment by using a UASB reactor and 

utilising seaweed extract as an adsorbent of heavy metals for leachate treatment. The 

research specific objectives for accomplishing the aims are as follows; to evaluate the 

efficiency of UASB reactor in the landfill leachate treatment at various organic loading 
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rates and to assess the performance of the UASB reactor with the addition of seaweed 

extract (RUB).  

 

2. Materials and methods  

2.1 Up-flow anaerobic sludge bed (UASB) reactor 

The UASB used in this experimental study was 18 cm in internal diameter and 

110 cm in height, with an active volume of 20 L. The reactor had a 3-phase separator 

baffle (pore diameter of 2 mm) placed 2 cm below the effluent ports to prevent floating 

granules from being washed out with the effluent. Sampling ports were placed at 8 cm 

intervals (lowest being 21 cm from the base) that allowed biological solid and liquid 

samples to be withdrawn from the sludge bed. The influent wastewater entered through a 

2.7 cm down comer tube at the head plate that extended to within 105 cm of the reactor 

base and allowed the feed to flow upward through the sludge bed. A temperature 

controller and heater were installed to maintain the reactor temperature at 37 °C.  

 

2.2 Landfill leachate 

The landfill leachate was obtained from an ageing leachate treatment pond at 

Jinjang transfer station, in Selayang, Selangor, Malaysia and had the following 

characteristics: pH=8.0, COD=2500 mgL-1, As=9.40 mgL-1, Fe=12.8 mgL-1, Ni=0.50 

mgL-1 and Cd=0.43 mgL-1. The leachate used in this study was collected at once and 

stored, then was used throughout the study. Thus, the characteristics were constant. 

 

2.3 UASB operations 

The reactor was seeded with anaerobically digested sewage sludge (Bunus 

Sewage Treatment Plant, Kuala Lumpur). Twelve litre of sieved sludge (by using a 2.0 

mm mesh) was filled into the UASB, and the remaining volume being filled with tap 

water. This amount of sludge substantially contributed to the solid requirement in the 

reactor system after settling. The sieved sludge contained total solids of 30,100 mgL-1 and 

total volatile solids of 9,525 mgL-1. After seeding, the head plates were attached, and the 

headspace above each compartment was flushed with nitrogen gas to displace residual air 

in the system before introducing the feed. The reactor was allowed to stabilise at 37°C for 

7 d without further modification. A total of 7 L of sieved sludge was added to the reactor, 

and the reactor was subsequently filled with tap water up to 20 L. The reactor was then 

flushed with excess nitrogen gas to remove the remaining air within the reactor headspace 

and was allowed to stabilise at 37 °C temperature for 24 hours. The start-up of the reactor 

was carried out by using dilute leachate with a very low COD concentration. Once the 

reactor attained a steady state condition (>80% COD removal), the feed (leachate) 

concentration was gradually increased by reducing the amount of water added. The OLR 

was increased stepwise from 0.125 - 0.833 kg COD m-3 d-1 and increased further to 2.5 

kg COD m-3 d-1 by reducing the HRT from 4 d to 1 d. Finally, the OLR was again reduced 

to 0.375 kg COD m-3 d-1 (HRT 4 d) to determine the ability of the reactor to recover the 

treatment efficiency (Table 1). The OLR was returned to the low level to observe the 

reactor capability to return to stable condition. The optimum macronutrient to COD ratio 

was maintained at COD: N: P =250: 7: 1 by adding N100 (Bio-Systems Corporation Asia 

Pacific Sdn Bhd) macronutrient supplement. The choice of this nutrient was based on 

inadequate nutrients in the landfill leachate. There were no excessive nutrients added to 

the feed as N100 was first diluted 10 times of its original concentration. In addition, the 

reactor was operated by using these nutrients, previously used for the treatment of palm 
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oil mill effluent and showed stable reactor operations. Average values of the measured 

parameters quoted for each OLR were based on three data points taken when the reactor 

achieved a steady state.  

 

Table 1: Summary of reactor operating conditions during the investigation of OLR on 

leachate treatment process 
Feed COD (mgL-1 ) OLR (kgCODm-3d-1) HRT (d) Duration (d) 

500 0.125 4.0 1–20 

1500 0.375 4.0 20–40 

2500 0.625 4.0 40–60 

2500 0.833 3.0 60–75 

2500 1.25 2.0 75–85 

2500 2.50 1.0 85–90 

1500 0.375 4.0 90–105 

 

 

2.4 Sampling and analysis 

Sample analysis, such as COD, pH and volatile acids (VA), was conducted 

according to standard methods [8]. The total biogas volume was determined by using an 

optical gas bubble counter. The biogas composition was determined by using a portable 

gas analyser (GA2000, Geotechnical Instruments). Heavy metal analysis of the leachate 

was conducted by using an atomic absorption spectrometry (AAS, AA-7700, Shimadzu 

Corp.).  

 

 

2.5 RUB  

 The dried local seaweed species of Gracilaria sp. was made into gels of different 

concentrations and tested for several properties, such as gel strength, gelling and melting 

temperature and alginate yield before proceeding to bead development. The following 

sections describe the gel properties analysis. 

 

2.5.1 Agar yield  

 Agar yield was examined according to the method described by the Food and 

Agriculture Organization (FAO) [9]. A fresh sample of seaweeds was weighed (wet 

weight) and 100 g of the fresh sample was dried in various conditions, such as air drying, 

solar drying and oven drying at 60°C and 100°C temperatures. Then the dry weight of 

each sample was determined. A 10 g sample from each drying condition was obtained 

and boiled in 500 ml water for 1 hour. The extract produced from the boiling was then 

filtered through a glass microfibre filter and allowed to cool. The filtrate was frozen and 

oven dried for 24 hours at 60°C. The final weight of the dried sample was measured to 

determine the agar yield under various drying conditions. 

 

2.5.2 Gel strength 
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 Gel strength was measured via a penetration test according to Marinho-Soriano and 

Bourret [10] and Kumar and Fotedar [11]. The gel strength was determined by a plunger 

with a 1 cm2 surface area and by penetrating the gel at a speed of 1 mms-1 to a depth of 5 

mm.  

 

2.5.3 Gelling temperature and melting temperature 

 These experiments were performed according to methods described by Freile-

Pelegrin and Murano [12] and Kumar and Fotedar [11]. A spherical glass bead was placed 

onto the gel, which was about to be cooled during the cooling phase of the agar yield 

study. Then, the gel was allowed to cool down together with the glass bead in it and the 

gel matrix, together with the glass bead entrapped in it, was reheated. Thus, the melting 

point of the gel is the temperature at which the glass bead entrapped in the gel matrix 

completely sinks into the gel and reaches the bottom of the container.  

 

2.5.4 Alginate yield  

  Alginates are polysaccharides found in seaweeds that have carboxyl group in 

their molecules for metal chelation and absorption of chemical molecules. This study is 

based on the methods illustrated by the FAO [9]. A sample of 10 g of fresh seaweeds was 

soaked in sodium bicarbonate solution. The alginic acid salts will precipitate in the 

alkaline sodium bicarbonate solution. This alkaline solution was then filtered by using a 

microfibre glass filter paper. Then the filter paper was washed with hydrochloric acid. 

The precipitated insoluble alginic acid was collected on the filter paper. By calculating 

the difference between the initial weight of the filter paper and the final weight of the 

filter paper, the alginate yield can be determined.  

 

2.5.5. Gel characterisation by fourier transform infrared spectrometer (FTIR) 

 A concentrated solution of the gel was prepared in a suitable solvent (CH2Cl2). A 

small amount (2 mg - 5 mg) of the gel was directly placed on the plates and one drop of 

solvent was added. The potassium bromide plates were thoroughly cleaned after this 

procedure to prevent contamination of future samples. The windows were wiped with a 

tissue and then washed several times with a solvent, then ethanol. The polishing kit in the 

lab was used to polish the window surface. The cleaned surface was clear and free from 

scratches. The infrared spectra of the gel were determined by using a Fourier Transform 

Infrared Spectrometer (FTIR) (Agilent Cary 600 Series FTIR). The gel was ground with 

Spectroscopic (IR) grade Potassium Bromide (KBr) powder and then pressed into 1 mm 

pellets for FTIR measurement in the wavenumber range of 600 cm-1 and 4000 cm-1 via 

16 scans. 

 

2.6 Development of RUB 

 After a methodical study of the properties of seaweeds, agar development of 

spherical beads can begin. The spherical shape provides a high surface area to volume 

ratio, which increases the efficiency of treating pollutants from leachate. Cold used oil 

spherification was used to develop the seaweed beads. Based on the results of gel test and 

jar test, the best seaweed species and optimum gel concentration were used to make beads. 

An optimum amount of dried seaweed was introduced into a 1 L beaker and 0.4 ml of 

water was added. The mixture was left to boil for 1 hour. After 1 hour, the hot extract was 

filtered and left to cool for 15 minutes. The cooled extract solution was immediately 

introduced into the cold used oil (refrigerated for 24 hours prior to the experiment) by 
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using a syringe to produce spherical beads. Due to the low temperature and insolubility 

in oil, the boiled extract will gelify in spherical shapes at the bottom of the container. 

 

2.7 Spherical Bead Filter 

 From the results of gel strength, gelling temperature and melting temperature, a 

spherical bead filter was designed. Based on the working temperature range, a suitable 

material to store the filter medium was plexiglass. This is due to the heat insulating 

properties of plexiglass. Another advantage of plexiglass is that it is transparent; thus, the 

operation of filter medium could be observed by the eye. The filter was cylindrical in 

shape, with a base of 5 cm diameter and 30 cm height. This filter design was optimal to 

support stacks of spherical beads on top of each other without crushing the beads. The 

bead had a diameter of 0.5 cm and it was loosely packed to allow feed flow without 

resistance and at the same time, the loosely packed beads would also ensure that there 

was no clogging in the filter medium. 

 

3.      Results and discussion 

 

3.1 Treatment of leachate by UASB 

Figure 1 (a) illustrates the average pH variations in the UASB when the OLR was 

gradually increased from 0.125 to 2.50 kgCODm-3d-1. The pH levels were stable (pH 

8.37– pH 7.53) in the UASB until the reactor OLR exceeded 0.625 kgCODm-3d-1.  At a 

reactor OLR of 0.833 kgCODm-3d-1, the pH in the reactor dropped to pH 6.77 due to the 

rapid production of VFAs resulting from the increased acidogenic activity. A further 

increase in the OLR to 1.25 kgCODm-3d-1 and 2.50 kg COD m-3d-1 diminished the pH of 

the reactor to pH 6.10 and pH 5.48, respectively. However, when the reactor OLR was 

reduced back to 0.375 kgCODm-3d-1, the pH in the reactor recovered to pH 8.37, 

indicating that the acidogenesis and methanogenesis had recovered to previous levels 

under low OLR conditions. From the pH data, it can be assumed that the metabolic 

processes differed between each OLR of the UASB system, causing each OLR to favour 

a unique population of microorganisms. As displayed in Figure 1 (a), the VFA 

concentration in the reactor was lower than 300 mgL-1, considered acceptable for a UASB 

reactor system [13]. The VFA concentration was observed to be low when operated at an 

OLR in the range of 0.125 kgCOD m-3d-1 - 1.25 kgCOD m-3d-1. Increasing the OLR 

beyond 1.25 kgCOD m-3d-1 resulted in higher VFA concentrations in the effluent. A 

drastic increase in VFA concentration was observed (255.7 mgL-1) at OLR of 2.5 

kgCODm-3d-1. When the OLR was reduced to 0.375 kgCODm-3d-1, the VFA concentration 

began to decline and stabilised to 157.3 mgL-1. Reduced contact time between the 

substrate and biomass in UASB favoured the activity of acidogens, leading to decreased 

methanogen activity in the reactor [14]. Some of the variations in the VFA profiles may 

be influenced by the presence of inhibitory substances, such as heavy metals [15]. At an 

OLR of 0.125 kgCODm-3d-1 (HRT 4 d), the average COD removal efficiency was 65.70% 

(Figure 1b). The increase of the OLR from 0.375 kgCODm-3d-1 to 1.250 kgCODm-3d-1 

resulted in a decreasing COD removal efficiency until 9.33% was observed at an OLR of 

2.50 kgCODm-3d-1. It is unlikely that this was caused by limitations in the UASB reactor 

as this reactor was shown to achieve over 90% COD removal at high OLR (e.g., more 

than 20 kgCODm-3d-1) [16]. However, matured landfill leachate containing a high 

proportion of recalcitrant and complex organic carbon content may limit the UASB 

performance at high OLR. Moreover, heavy metals concentrations in the feed (leachate) 
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may also contribute to the poor performance of the reactor system [17]. Organic matters 

washed out from the reactor in the form COD may have contributed to the overall low 

removal of COD. 

 

(a) 

 

(b) 

 

(c) 

Figure 1: UASB performance profile for landfill leachate treatment, a) pH and VA, b) 

COD removal, and c) Methane composition 

 

The average methane composition fluctuated from 38.50% to 9.53% (Figure 1c), 
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likely due to the changes in the OLR, since the methanogenic bacteria are sensitive to the 

changes in feed OLR. As an indirect measure of biomass fluctuations in the reactor, the 

suspended solids (data not provided) in the reactor correlated well with the methane 

generation. The methane composition profile followed the COD removal efficiency, 

where the concentration was reduced concomitantly with COD removal. A similar trend 

was also observed for the VFA profile. Abbassi-Guendouz et al. [18] demonstrated that 

VFA decreased when methane composition decreased in an anaerobic treatment process. 

The methane profile has a close relationship with pH where a decrease in the pH affects 

the methane generation [19]. Overall, the methane percentage was low first of all due to 

the fact that matured leachate contains a less organic fraction. Besides that, the high pH 

value could also be the reason for lack of methanogenic activity. 

 

3.1.1 Heavy metal removal 

Table 2 shows the effect of OLR on the heavy metals removal. It can be seen that the 

removal of Cd, Ni and Fe were almost constant, regardless of the OLR [around Cd (36%), 

Ni (32%) and Fe (29%)]. The stable population of bacteria appears to tolerate the 

introduction of these metals into the reactor system when the OLR gradually increased 

from 0.125 to 2.5 kgCODm-3d-1 and decreased back to 0.375 kgCODm-3d-1. In contrast, 

the degree of removal at low OLR’s (e.g., 40% at 0.125 and 0.833 kgCODm-3d-1, 

respectively), but at high OLR (e.g. 2.5 kgCODm-3d-1), was dramatically decreased 

(3.83% and 7.81%, respectively). When the OLR was decreased back to 0.375 kgCODm-

3d-1, some removal was still evident (around 26%), signifying that the anaerobic 

microorganisms in the reactor were capable of recuperating from the shock load. The 

removal of heavy metals could have occurred by either bioaccumulation or accumulation 

in sludge [20]. Bioaccumulation was less likely to be possible, thus, the pollutants might 

have accumulated in the sludge. 

 

Table 2. Effect of OLR on heavy metal removal  
OLR  

(kg CODm-3 d-1) 

      Heavy Metal Removal (%) 

 As Cd Ni Fe  

0.125 40.00 36.36 32.00 29.69  

0.375 40.00 36.92 33.33 29.69  

0.625 40.00 37.04 32.80 29.69  

0.833 40.00 36.36 32.93 29.69  

1.25 18.72 36.28 32.80 29.70  

2.5 3.83 36.28 32.80 29.70  

0.375 26.04 36.92 33.33 29.69  

 

 

3.2 Leachate treatment by UASB and RUB 

After successfully creating RUB and placing it into the adsorbent holder, a pre-

treatment step to enhance the treatment of leachate and then conducting UASB treatment 

was performed. In this phase, the reactor was operated at a fixed HRT (4 d) and OLR 

(0.375 kgCODm-3d-1) and performance were evaluated and compared before and after the 

combination of RUB with the UASB. Figure 2(a) illustrates the pH variations when the 

leachate was treated by UASB and UASB + RUB. The pH levels were generally stable 



9 
 

(7.98 - 7.01) in the treatment of leachate by UASB and in the treatment of leachate by 

UASB + RUB (7.51 - 6.64). pH is an important parameter in anaerobic treatment 

performance and many studies have shown the optimum pH for the anaerobic digestion 

is in the alkaline region [21]. The anaerobic process could be advantageous to 

methanogenic bacteria when the pH ranges from 6.5 - 7.5 [22]. From the pH profile, it 

can be assumed that the UASB + RUB treatment of leachate takes place at a more suitable 

pH for methanogenic bacteria activity as compared to UASB treatment of leachate. 
 

 

(a)                                                                             (b) 

 

      (c)                                                                            (d) 

Figure 2: UASB performance profile before and after the treatment with RUB, a) pH, b) 

volatile acid, c) COD removal and d) methane composition 

 

Figure 2 (b) illustrates that VA concentrations were better in UASB + RUB than 

in UASB treatment. This was evident because as the VA values registered were lower 

after UASB + RUB treatment of leachate than UASB treatment. The VA concentration is 

an indicator of feed utilisation by anaerobic microorganisms. When there is a build-up of 

VA in the anaerobic system, it is probably an indication of the anaerobic microorganism’s 

failure to utilise the VA as feed. Conversely, the results of UASB + RUB and UASB 

treatment leachate revealed that there was no obstruction to VA utilisation by anaerobic 

microorganisms as all the VA registered readings within the range that indicated a healthy 

anaerobic system [23]. However, the addition of RUB enhanced the leachate treatment 

by almost 50% as compared to the average value of VA. Results of COD removal by 

UASB + RUB and UASB treatment of leachate are illustrated in Figure 2 (c). Both 
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treatment systems attained a constant COD removal after Day 20, however, the values 

attained had set them apart. The UASB + RUB treatment of leachate has an edge over 

UASB treatment of leachate as it could achieve removal up to 93%. The remainder of 

untreated COD in the effluent probably belongs to inorganic constituents or originated 

from bacterial waste generated during the UASB + RUB treatment process itself. The 

addition of RUB to the UASB system improved the COD removal by 15%. The average 

methane composition at steady state was 71.3% and 64.17% (Figure 2 (d)) for UASB + 

RUB and UASB treatment of leachate, respectively. The methane composition profile 

followed the COD removal efficiency pattern, whereby, it steadily increased up to 20 

days and then stabilised for both treatment systems. The combination of RUB with UASB 

increased the methane composition by 7.13% on average at steady state.   
 

3.2.1 Heavy metal removal 

Table 3 shows the heavy metals removal in leachate by UASB + RUB and UASB. 

This indicated that the anaerobic microorganisms utilised the pollutants or it was absorbed 

by the RUB. This explains the trend observed in heavy metals speciation in the current 

study (data not provided), whereby UASB + RUB always displayed a higher efficiency 

in heavy metals removal from leachate as compared to UASB. UASB treatment of 

leachate registered poor treatment effectiveness for heavy metals, as the removal for As, 

Cd, Ni and Fe was 40.00, 36.36, 32.00 and 29.69%, respectively (Table 3). However, 

when the leachate was treated with UASB + RUB the removal efficiency of As, Cd, Ni 

and Fe drastically increased to 95.4%, 100%, 100% and 100%, respectively. Gracilaria 

sp. based adsorbents are capable of adsorbing 0.15 to 0.76 mmolg-1 of Cd and 0.2 mmolg-

1 of Ni, which is equivalent to 0.058 to 0.2939 mgL-1  of Cd and 0.0773 mgL-1 of Ni [6]. 

The current study reports similar adsorption capacities as compared to values mentioned 

by the researchers. However, no relevant literature regarding the adsorption of other 

metals was found.  
 

Table 3: Heavy metal removal profile by UASB + RUB and UASB 
Treatment type Heavy Metal Removal (%) 

As Cd Ni Fe  

UASB 40.00 36.36 32.00 29.69  

 

UASB + RUB 95.4 100 100 100  

 

 

3.2.2 FTIR spectra of RUB pre and post leachate treatment 

This section discusses the results obtained from FTIR spectroscopy analysis of 

RUB before and after they were used in leachate treatment. Figure 3 a) illustrates the 

spectral result of RUB prior to the leachate treatment at the beginning. Meanwhile, Figure 

3 b) illustrates the result of spectral analysis of RUB extracted from the adsorbent holder 

after the leachate treatment at the end. Figure 3 c) illustrates the overlay of a) and b) to 

facilitate observation of changes that occurred (if any) in the bands or functional groups 

present in the RUB. Although Figure 3a) and Figure 3b) appear similar, which is typical 

of spectral samples of the same substance, a distinctive difference is visible in the overlaid 

image. The increase of absorbance in the 3500 - 3000 cm-1, 1700 -1500 cm-1, 1200 - 1000 
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cm-1 and 661 cm-1 indicates clearly that RUB is the major component that has worked to 

remove the heavy metals.  

 

 
a) 

 

 
b) 

 

 

c) 

Figure 3: FTIR spectroscopy of RUB pre and post leachate treatment, a) RUB before 

treatment, b) RUB after treatment and c) Overlay of a) and b) 
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From Table 4, it is evident that functional groups or compounds that are present 

in the RUB are the major adsorbing agents. A study by Yanagisawa et al. [24] also 

confirms the presence all the aforementioned functional groups and compounds present 

in the Gracilaria sp. sample. RUB made of Gracilaria sp. proves to be a good adsorbent 

for the pollutants present in matured leachate sample. This is evident from the results 

(Figure 3 and Table 4) of FTIR study of the bead before and after adsorption study. The 

results revealed that there were 4 major chemical components responsible for pollutants 

removal from the matured leachate. The first region was found to be the 3408 cm-1, where 

it indicated the N-H or amine, O-H or hydroxide bond which can be found in 

polysaccharides or water molecules. This region was found to possess prominent 

absorbance as compared to other regions in the FTIR result, which shows that it is the 

most abundant functional group present in the RUB. Consequently, the order of functional 

group abundance was followed by C=O or carboxylic, N=O or amide, S=O or sulfinyl, 

and C=S or sulfides. The comparison was made respective to the absorbance area 

acquired by each functional group. The results revealed that pollutants (heavy metals) 

could be adsorbed by more than one functional group.  

 

Table 4: Characterisation of RUB using FTIR 
Gracilaria sp. 

Functional Groups Compound 
Abs. Fre (cm-1) 

3408 N-H Stretching  

O-H Stretching 

Amino acids 

Polysaccharides 

1662, 1653,  

1645 

 

C=O Stretching, 

N=O asymmetric 

Stretching (Nitrate) 

Ester, Pectin 

1560 C=C Stretching Lignin 

1457, 1430  

 

C- O Stretching 

O-H bending 

Cutin 

1246 C-C-O, S=O Stretching Lignin 

1193 C-O Stretching (phenols) 

C-F Stretching 

Cellulose 

1102 C-F Stretching 

Si-O 

Cellulose, 

Carbohydrates 

1034 S=O Stretching 

(sulfonides) 

Starch and 

Polysaccharides 

657, 617 

606 

C-S Stretching 

C=S Stretching (sulfides) 

Sulfates 
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Despite the multifaceted adsorbent nature of the functional groups in the RUB, 

the common factor which acts as the driving force of the adsorption process is the lone 

pair of electrons present in the functional group. Lone-pair electrons signify the pair of 

valence electrons which are not shared with an adjacent atom. According to Lewis 

structure of functional group and quantity of lone-pair of electrons [25], functional group 

with the lone-pair electrons is sulfynil (S=O) which has 4 lone-pair of electrons, followed 

by hydroxides (O-H), and amides (N=O) which has 3 lone-pair of electrons, carboxylic 

(C=O) functional group has 2 lone-pair of electrons and amine (N-H) and sulfide (CS) 

have 1 lone pair of electrons each. Heavy absorbance at the O-H and N-H regions of the 

FTIR spectra indicates the dominance of this functional is in abundance. Apart from the 

sulfinyl presence and sulfide is also heavy in terms of absorbance in FTIR spectra. That 

is evident when there is a sharp increase in absorbance of RUB after treatment spectra 

(Figure 3). In Figure 3 c) it was also clear that the C=O and N=O also have a sharp 

increase in absorbance in RUB after treatment spectra. From this result, we could only 

conclude that O-H, N-H, C=O, N=O, S=O and CS are responsible for the removal of 

pollutants in matured leachate. Further study is required to determine which functional 

group has the most significant role in the removal of these pollutants from the matured 

leachate.  
 

4.        Conclusions  

This research was initiated with the main aim of optimising the anaerobic 

treatment by using a UASB reactor for leachate treatment by utilising seaweed extract as 

an adsorbent of heavy metals. From the experimental results, there appears to be 

considerable potential for the UASB combined with the RUB system to be implemented 

on-site for treatment of matured landfill leachate. The treatment efficiency of the reactor 

was affected at an OLR of 2.50 kgCODm-3d-1, probably due to the recalcitrant nature of 

the wastewater containing high levels of heavy metals at elevated OLR. At high OLR, the 

concentration of heavy metals may have increased many folds, which may have inhibited 

the methanogens. The UASB + RUB treatment of leachate has the edge over UASB 

treatment of leachate as it could achieve removal up to 93%. UASB + RUB always has a 

higher efficiency in heavy metals removal from leachate as compared to UASB. The FTIR 

study of RUB after treatment revealed that there was an increase of absorbance and clearly 

indicated that RUB was the major component that has worked to remove the heavy metals. 
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