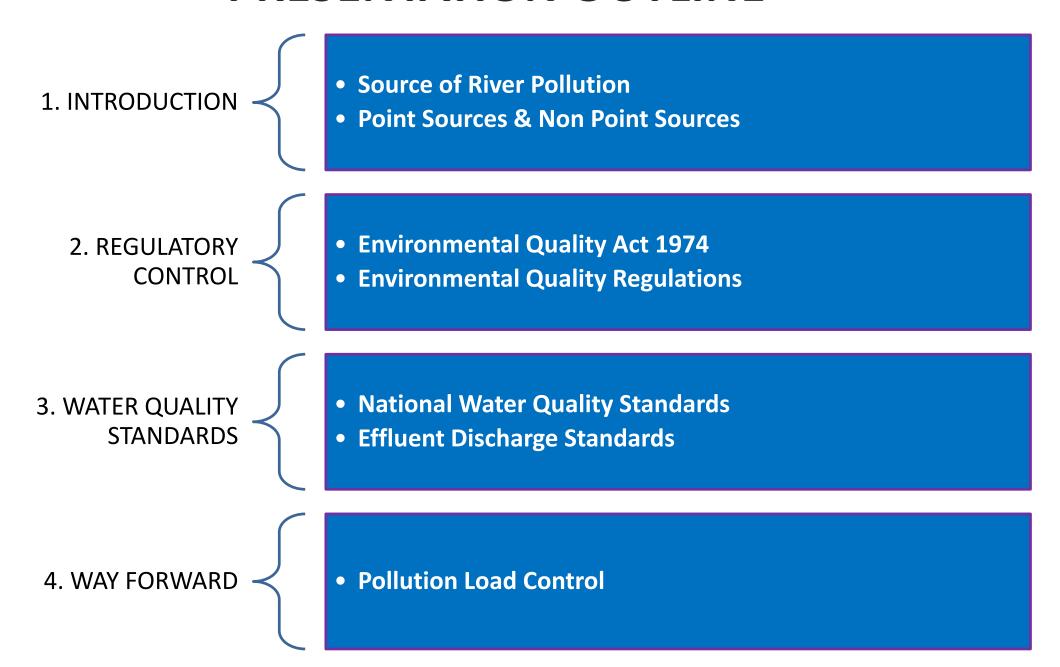


Department Of Environment

Ministry of Energy, Science, Technology, Environment & Climate Change (MESTECC)

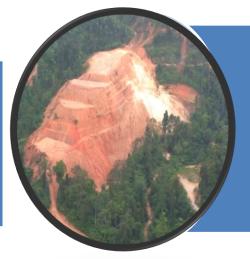

TOTAL MAXIMUM DAILY LOAD -A Solution to Dry Spell Pollution?

MOHD HIDZIR B BAKAR

WATER & MARINE DIVISION,
DEPARTMENT OF ENVIRONMENT PUTRAJAYA

10 March 2020

PRESENTATION OUTLINE



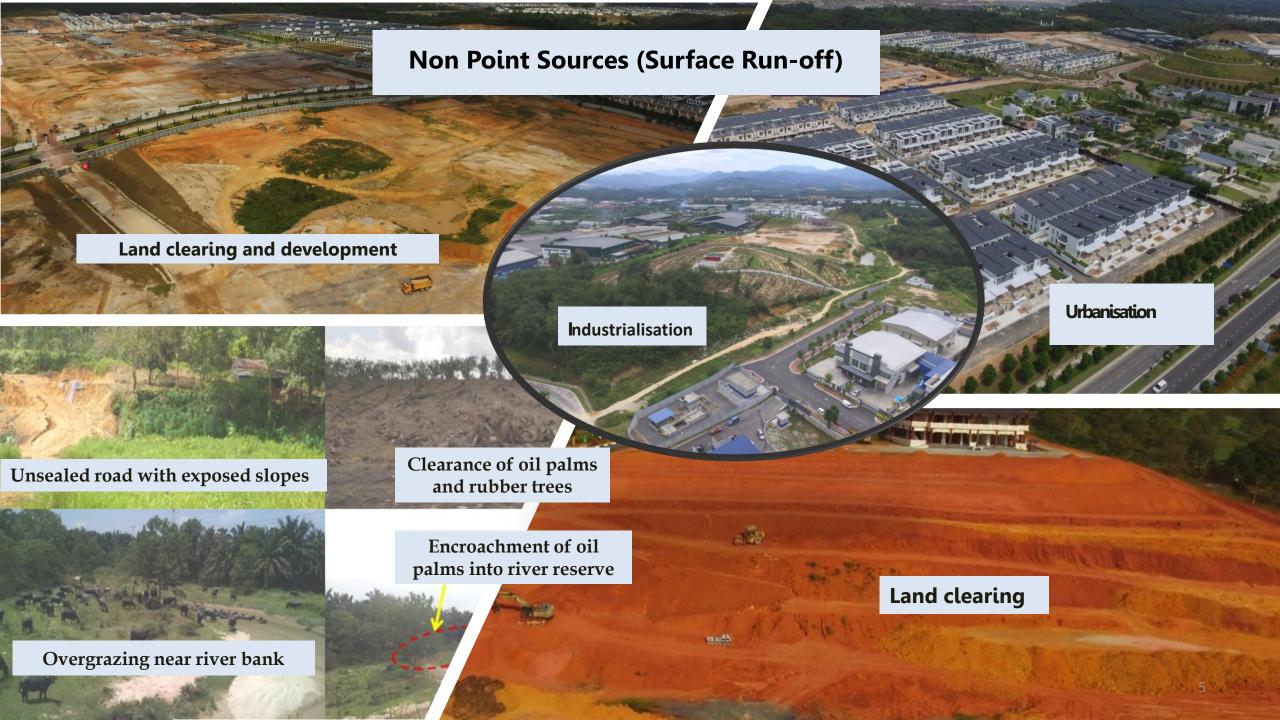
Sources of River Water Pollution

- Point Source- Subject and Not Subjected to Environmental Quality Act 1974
- Non-Point Source- Not subjected to Environmental Quality Act 1974 (except prescribed activities subjected to EIA Order 2015)
- Human activity

Point Source-Effluent & sewage discharges

Non-Point Source – Surface run-off from agricultural, livestock farming, residential, commercial, forest logging, land clearing and other activities

Point Sources



Laundromats

Food Courts

Regulatory Control

2. REGULATORY CONTROL

- Environmental Quality Act 1974
- Environmental Quality Regulations

RIVER WATER QUALITY ISSUES

Scenario: Pollution sources from livestock farm and agricultural sectors

Department of Agriculture

Fertilizer and Pesticides

Department of Veterinary Services

Poultry Enactment

Department of Environment

EIA Prescribe Activities (Farming Activities more than 20 hectares)

Kawal Selia Air Negeri (BKSA)

State Water Body Regulators (BKSA)

Conservation and Developing Water Sources, Regulates Raw Water Supplier.

National Water Services Commission (SPAN)

Regulates Water Supply and Sewerage Operators

Ministry of Health (MOH)

Drinking Water Quality Standard & Recommended Raw Water Criteria

Contoh Operator Loji Rawatai

Water Treatment Plant Operators

Ensure Raw Water Quality According to Standards Prior to Processing.

Local Authorities (LA)

Act 133, Act 171, Act 172

Accountable to planning, development implementation and operation

Department of

Environment (DOE)

Regulate Industrial

Effluent, Sewerage,

Hazardous wastes, and

Department of Irrigation and Drainage (DID)

River

Department of Mineral and Geoscience (JMG)

Quarry Permit (Iron Ore, Gold and others)

Department of Lands and Mines (PTG)

Regulate Sand Mining

Scenario: Pollution Sources from Mixed Use Development

Discharge from Housing and Commercial (Restaurants, Eateries, Wet Markets, Laundries, and Car Wash)

EIA Projects

Solid Waste and Public Cleansing Management Corporation (SWCorp)

Regulate services of solid wastes

Sewerage Services Department (JPP)

Regulate Sewerage Industry

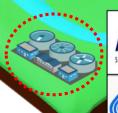
Indah Water Consortium (IWK)

Sewerage Plant Operator

National Water Services Commission (SPAN)

Regulates Water and Sewerage Operators

National Solid Waste Management Department (NSWMD)


Act 672

Solid Waste Management

Ministry of Health (MOH)

Drinking Water Quality Standard and Recommended Raw Water Quality

Water Treatment Plant Operators

State Water Body Regulators (BKSA)

Pollution Control: Regulation On Effluent / Wastewater Discharge

Environmental Quality Act 1974

Control of pollution from targeted industrial sectors (through **end-of-pipe** control)

- Environmental Quality (Prescribed Premises) (Crude Palm Oil) Regulations 1977
- Environmental Quality (Prescribed Premises) (Raw Natural Rubber) Regulations 1978
- Environmental Quality (Sewage and Industrial Effluent) Regulations 1979.

Post - 2008:

(Cleaner production approach, proper operation and maintenance of Industrial Effluent Treatment Systems, Sewage Treatment Systems and Leachate Treatment Systems)

- Environmental Quality (Industrial Effluent) Regulations 2009
- Environmental Quality (Sewage) Regulations 2009
- Environmental Quality (Control of Pollution From Solid Waste Transfer Station And Landfill)
 Regulations 2009

Pollution Control: Regulation On Effluent

Acceptable Conditions For Discharge Of

Industrial Effluent Or Mixed Effluent Of Standards A And B

Standard A	Standard B
Upstream of water intake	Downstream of water intake
More stringent than standard B	

Parameter		Unit	Stan	ıdard
			A	В
	(1)	(2)	(3)	(4)
i.	Temperature	°C	40	40
ii.	pH Value	_	6.0-9.0	5.5-9.0
iii.	BOD ₅ at 20oC	mg/L	20	50
iv.	Suspended Solids	mg/L	50	100
v.	Mercury	mg/L	0.005	0.05
vi.	Cadmium	mg/L	0.01	0.02
vii.	Chromium, Hexavalent	mg/L	0.05	0.05
Viii.	Chromium, Trivalent	mg/L	0.20	1.0
ix.	Arsenic	mg/L	0.05	0.10
X.	Cyanide	mg/L	0.05	0.10
Xi.	Lead	mg/L	0.10	0.5
X11.	Copper	mg/L	0.20	1.0
XIII.	Manganese	mg/L	0.20	1.0
xiv.	Nickel	mg/L	0.20	1.0
XV.	Tin	mg/L	0.20	1.0
XVi.	Zinc	mg/L	2.0	2.0
XVII.	Boron	mg/L	1.0	4.0
XVIII.	Iron (Fe)	mg/L	1.0	5.0
xix.	Silver	mg/L	0.1	1.0
XX.	Aluminium	mg/L	10	15
xxi.	Selenium	mg/L	0.02	0.5
xxii.	Barium	mg/L	1.0	2.0
	Fluoride	mg/L	2.0	5.0
xxiv.	Formaldehyde	mg/L	1.0	2.0
XXV.	Phenol	mg/L	0.001	1.0
xxvi.	Free Chlorine	mg/L	1.0	2.0
xxvii.	Sulphide	mg/L	0.50	0.50
xxviii.	Oil and Grease	mg/L	1.0	10
xxix.		mg/L	10	20
XXX.	Colour ADMI*		100	200

LIST OF EIA GUIDELINES & PUBLICATIONS

1. A Handbook Of EIA Guidelines

8. EIA Guidelines For Municipal Solid Waste and Sewage Treatment and Disposal Projects

2. Environmental Requirements – A Guide For Investors

9.EIA Guidelines For Industrial Estate Development

3. EIA Guidelines For Coastal Resort Development Projects

10. Guidelines For The Siting and Zoning Of Industries

4. EIA Guidelines For Industrial Projects

11. Environmental Impact
Assessment (EIA) – Procedure and
Requirements In Malaysia.

5. EIA Guidelines For Toxic and Hazardous Waste Treatment and Disposal Projects

12. EIA Guidelines For Petroleum Industries

6. EIA Guidelines for Groundwater and/or Surface Water Supply Projects.

13. EIA Guidelines for Risk Assessment

7. EIA Guidelines for Dam and/or Reservoir Projects.

14. EIA Guidelines for Drainage and/or Irrigation Projects

National Water Quality Standard

3. WATER Quality
Standards

- National Water Quality Standards
- Effluent Discharge Standards

NATIONAL WATER QUALITY STANDARDS FOR MALAYSIA

PARAMETER	UNIT	CLASS						
IONOMETER	Oldii	I	IIA	IIB	III	IV	V	
Ammoniacal Nitrogen	mg/l	0.1	0.3	0.3	0.9	2.7	> 2.7	
Biochemical Oxygen Demand	mg/l	1	3	3	6	12	> 12	
Chemical Oxygen Demand	mg/l	10	25	25	50	100	> 100	
Dissolved Oxygen	mg/l	7	5 - 7	5 - 7	3 - 5	< 3	< 1	
рН	-	6.5 - 8.5	6 - 9	6 - 9	5 - 9	5 - 9	-	
Colour	TCU	15	150	150	-	-	-	
Electrical Conductivity*	μS/cm	1000	1000	-	-	6000	-	
Floatables	-	N	N	N	-	-	-	
Odour	-	N	N	N	-	-	-	
Salinity	%	0.5	1	-	-	2	-	
Taste	-	N	N	N	-	-	-	
Total Dissolved Solid	mg/l	500	1000	-	-	4000	-	
Total Suspended Solid	mg/l	25	50	50	150	300	300	
Temperature	οС	-	Normal + 2 °C	-	Normal + 2 °C	-	-	
Turbidity	NTU	5	50	50	-	-	-	
Faecal Coliform**	count/100 ml	10	100	400	5000 (20000)a	5000 (20000)a	-	
Total Coliform	count/100 ml	100	5000	5000	50000	50000	> 50000	

Notes:

N: No visible floatable materials or debris, no objectional odour or no objectional taste

* : Related parameters, only one recommended for use

** : Geometric mean

a: Maximum not to be exceeded

DOE Water Quality Classification Based On Water Quality Index

SUB INDEX &	INDEX RANGE				
WATER QUALITY INDEX	CLEAN	SLIGHTLY POLLUTED	POLLUTED		
Biochemical Oxygen Demand (BOD)	91 - 100	80 - 90	0 - 79		
Ammoniacal Nitrogen (NH ₃ -N)	92 - 100	71 - 91	0 - 70		
Suspended Solids (SS)	76 - 100	70 - 75	0 - 69		
Water Quality Index (WQI)	81 - 100	60 - 80	0 - 59		

DOE Water Quality Index Classification

DADAMETED	LIMIT	CLASS					
PARAMETER	UNIT	1	Ш	III	IV	٧	
Ammoniacal Nitrogen	mg/l	< 0.1	0.1 - 0.3	0.3 - 0.9	0.9 – 2.7	> 2.7	
Biochemical Oxygen Demand	mg/l	< 1	1 – 3	3-6	6 – 12	> 12	
Chemical Oxygen Demand	mg/l	< 10	10 - 25	25 - 50	50 - 100	> 100	
Dissolved Oxygen	mg/l	> 7	5 – 7	3 – 5	1 – 3	< 1	
pH		> 7.0	6.0 - 7.0	5.0 - 6.0	< 5.0	> 5.0	
Total Suspended Solid	mg/l	< 25	25 – 50	50 – 150	150 – 300	> 300	
Water Quality Index (WQI)	-	> 92.7	76.5 – 92.7	51.9 – 76.5	31.0 – 51.9	<31.0	

WQI - a method that combined numerous water quality parameters into one concise and objective value representing the state of water quality trends in a river.

 $WQI = (0.22 \times SIDO) + [0.19 \times SIBOD] + [0.16 \times SICOD] + [0.15 \times SIAN] + [0.16 \times SISS] + [0.12 \times SIPH]$

SIDO	SIBOD	SICOD	SIAN	SISS	SIpH
Sub-Index Dissolved Oxygen (in % saturation)	Sub-Index Biochemical Oxygen Demand	Sub-Index Chemical Oxygen Demand	Sub-Index Ammoniacal Nitrogen	Sub-Index Suspended Solids	Sub-Index pH

WATER CLASSIFICATION & BENEFICIAL USES

> 92.7

Conservation of natural environment.

Water Supply I – Practically no treatment necessary.

Fishery I – Very sensitive aquatic species.

51.9 - 76.5

Water Supply III – Extensive treatment required.

Fishery III – Common, of economic value and tolerant species; livestock drinking.

76.5 – 92.7

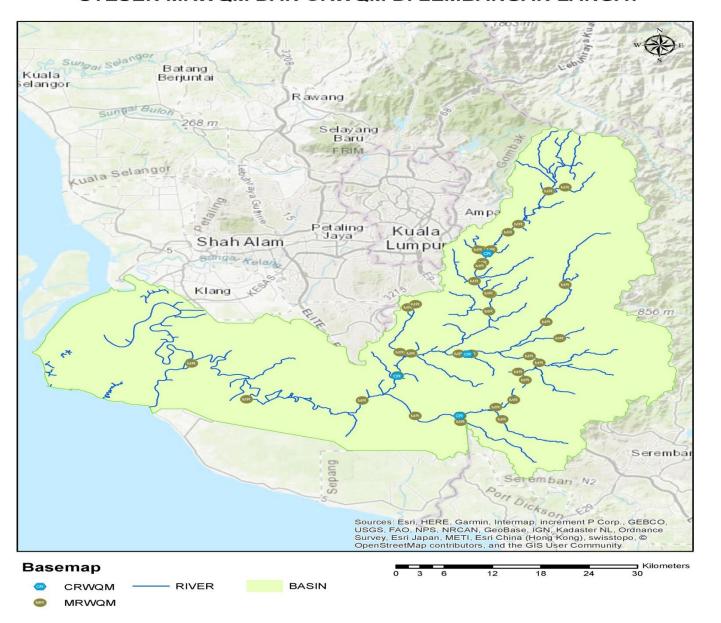
Water Supply II – Conventional treatment required.

Fishery II – Sensitive aquatic species.

31.0 – 51.9

Irrigation

76.5 - 92.7


Recreational use with body contact.

< 31.0

None of the listed uses

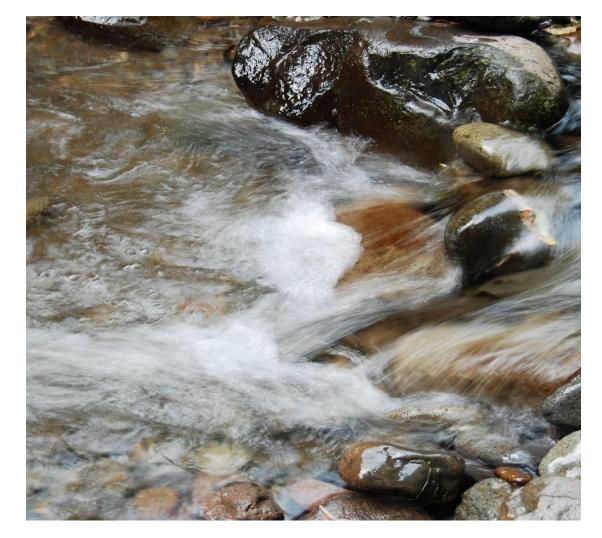
STESEN MRWQM DAN CRWQM DI LEMBANGAN LANGAT

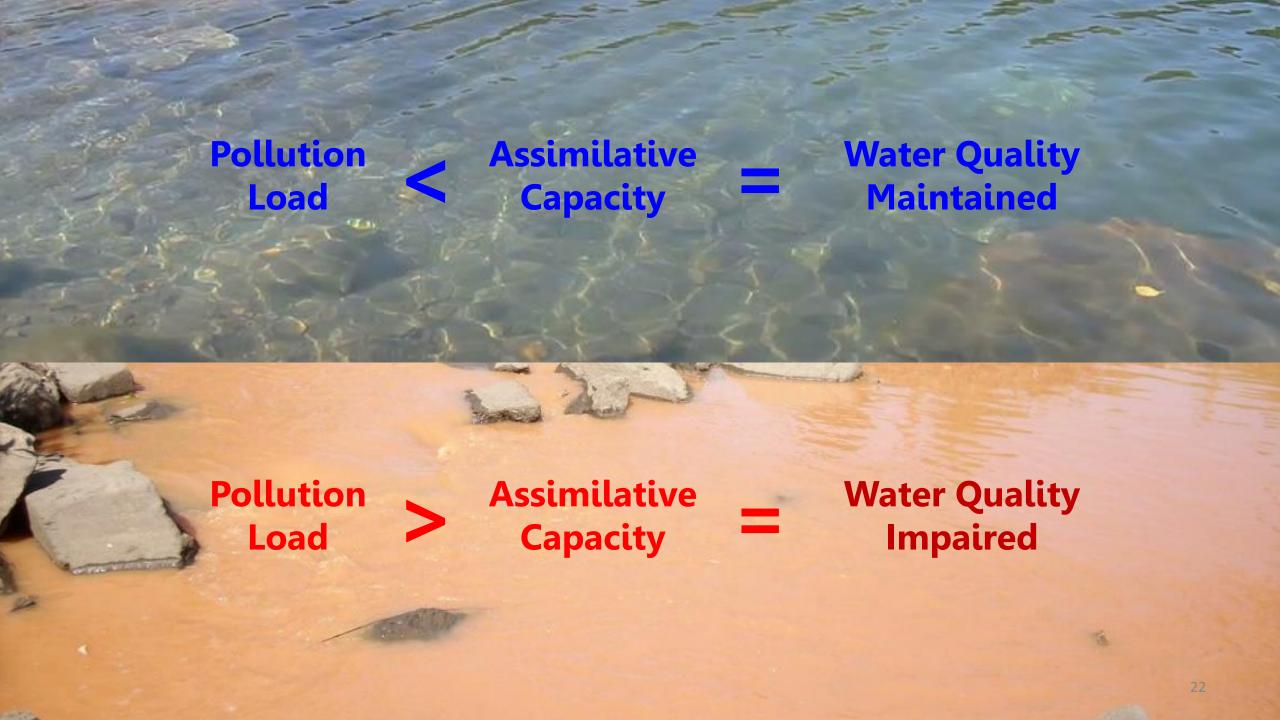
RIVER	NO OF STATIONS
ANAK CHUAU	1
BALAK	1
BATANG BENAR	2
BATANG LABU	8
BATANG NILAI	2
BERANANG	1
BUAH	1
CHUAU	2
JIJAN	1
LANGAT	9
LIMAU MANIS	1
PAJAM	1
RINCHING	2
SEMENYIH	3
SERING	1
CRWQM	4
TOTAL	40

Langat River Basin: Beneficial Uses Of Water

Crop Irrigation

4. WAY FORWARD Pollution Load Control


Limitation of Pollutant Concentration Standard

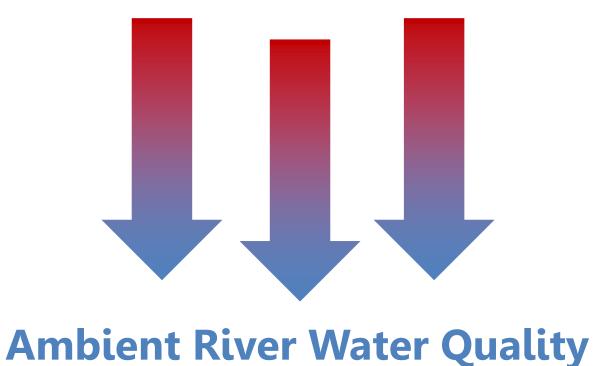

Pollution control base on pollutant concentration of effluent discharged is no longer effective due to:

- Only focus on individual point source;
- Only control sources subjected to Environmental Quality Act 1974. Sources not subjected to EQA is hardly control;
- Unable to predict cumulative impact from various sources;
- Does not reflect the actual pollutant loading entering a water body

Assimilative Capacity of a River

 Assimilative Capacity refers to the ability of a natural body of water (lake, river, sea) to cleanse itself (self purification); its capacity to receive waste waters or toxic substances without harmful effects and damage to aquatic life and to humans who consume the water.

TMDL Historical Perspective

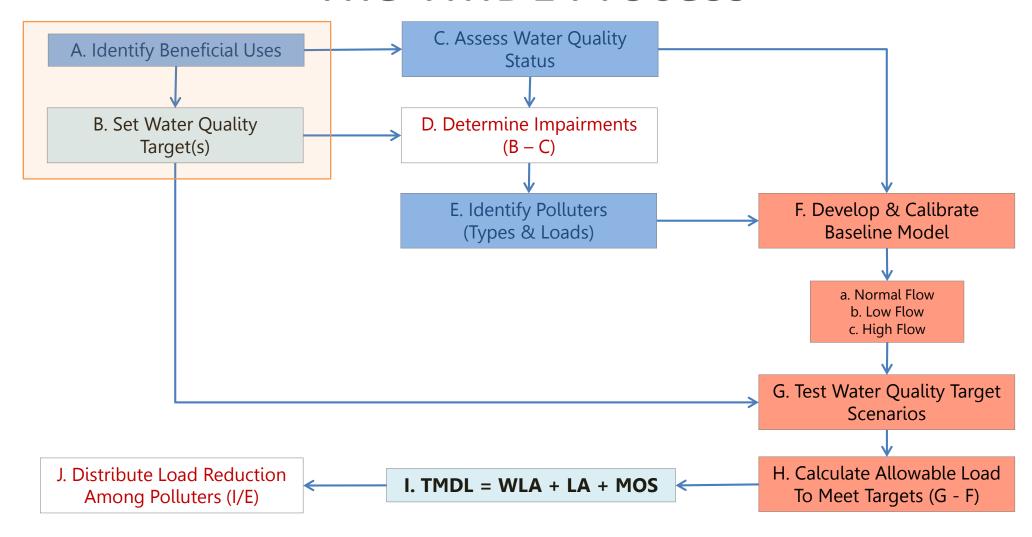

- Prior to 1970s, ambient based water quality legislation in the US was State administered but overwhelmingly failed.
 - 1972 US Clean Water Act prescribed a National Pollutant Discharge Elimination System (NPDES) focusing on achieving effluent standards for pollution control.
- Despite committed implementation, standards were often not met (largely due to unregulated non-point source pollutants) which resulted in a series of lawsuits in the 1980s.
- Attention was given to TMDL (under Section 303(d) CWA) which marked a return to ambient standards but in the form of prescriptions.

WAY FORWARD

Implementation of TOTAL MAXIMUM DAILY LOAD (TMDL) As A Long Term Strategy To Improve Water Quality

What is TMDL?

Pollution Sources and Polluters


A pollution allocation budget that states the **maximum** amount of pollutants that can be received by a water body, without affecting beneficial uses.

TMDL addresses the 'carrying capacity' of a river – pollution loads that can be received/assimilated by a river without adversely affecting its beneficial uses

TMDL = Point Sources (WLA) + Non-Point Sources (LA) + MOS

WLA is the waste load allocation from point sources (kg/day)
LA is the load allocation from non-point sources (kg/day); and
MOS represents the margin of safety (%)

The TMDL Process

Stakeholders of Water Resources Management

Jabatan Pertanian Negeri Selangor Pejabat Perkhidmatan Veterinar Daerah Hulu Langat & Negeri Sembilan

Pengurusan Air Selangor

Kementerian Tenaga, Teknologi Hijau dan Air Suruhanjaya Perkhidmatan Air Negara Jabatan Pengairan dan Saliran

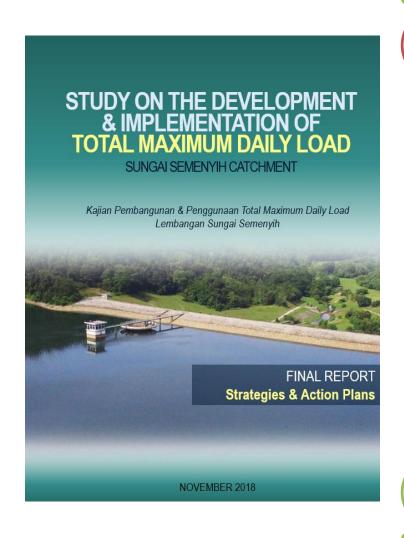
Lembaga Urus Air Selangor

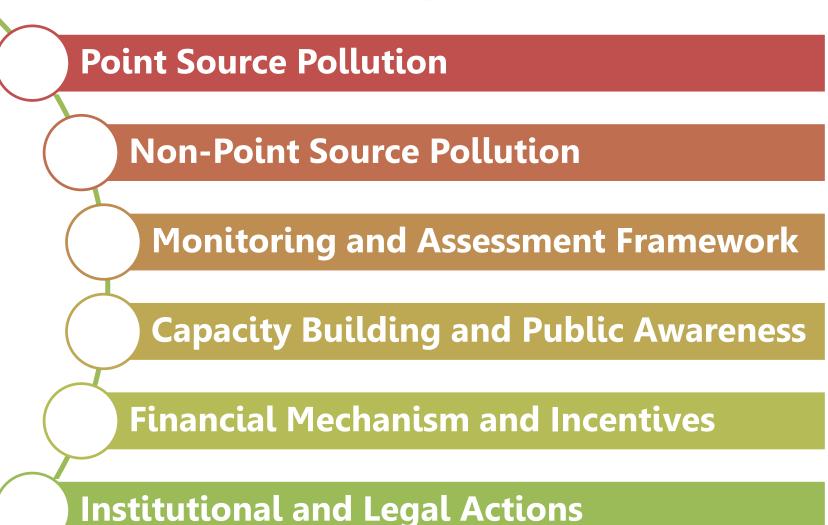
Majlis Perbandaran Sepang

Majlis Perbandaran Kajang

Majlis Perbandaran Nilai

Pengurusan Aset Air Berhad

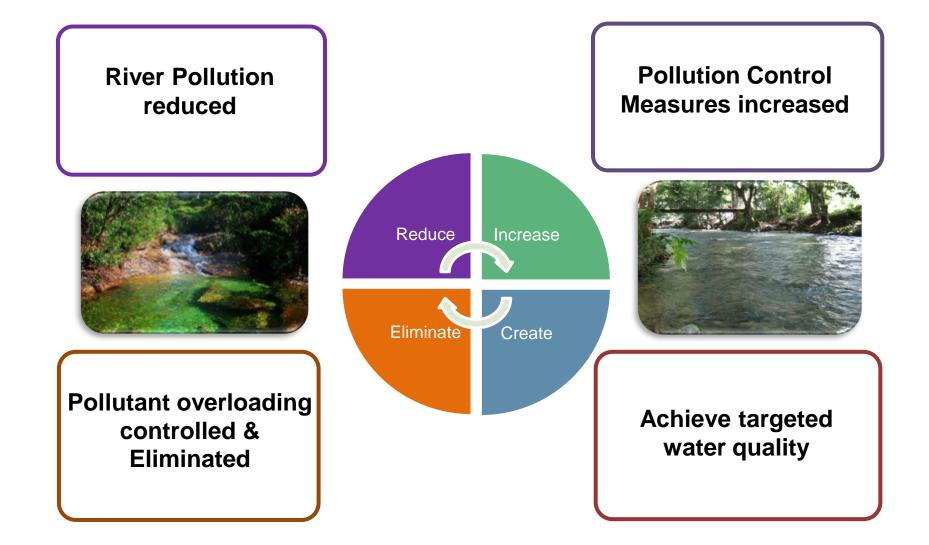



Jabatan Bekalan Air

Jabatan Perkhidmatan Pembetungan

TMDL Strategies: Integrated Approach For Sustainable Pollution Management

TMDL Implementation include all stakeholders involved in water resource management. Every agency shall play their role as a collective pollution control



Effective TMDL implementation will result to positive impact on river water quality in short, medium and long term

EXPECTED OUTCOME OF TMDL

THANK YOU