The Concept of Value Engineering in Application of GRP Pipes for Water and Sewage Transmission

Hassan Assaee, Ph.D.

Engineering Director
FARASSAN Manufacturing and Industrial Company
FARATEC Technology Center
Farassan Manufacturing and Industrial Company

- Established in 1986 in Iran as an FRP towers and blade manufacturer. The company has been producing pipes for the global market since 1993.
- EPCF project contractor in water and sewerage

- Largest manufacturer of GRP, GRE and GRVE pipes and fittings in Iran
 - Has executed more than 7000km in water and sewage transport projects, 1600km in O&G industry
 - Design, manufacture, transport and install GRP pipes
 - Pipes produced under brand name “Faratec” and exported to 17 countries in Asia, Europe and Africa
 - Five plants in Iran, One plant in Turkey, JV plant in Algeria
 - Nine production lines, each line having a capacity of ~250km/year up to 3000mm in diameter
 - Dedicated plant for GRE pipe fittings, joints, and manholes
 - Dedicated GRP Towers, pressure vessels and Tanks production facility
 - Dedicated steel workshop and GRP pipe machinery manufacturing
 - 1000 employees with over 100 technical staff

- Also produce FRP towers and tanks up to 7.5m in diameters
- Turnkey manufacturing facility designed and installed in South Korea
Polymer Composites

Matrix

Polyester Resin (Isophetalic & Orthophetalic)
Venylester Resin
Expoxy Resin

Fibers

Glass Fiber
Kevlar
Carbon
Silicon Carbide

Glass Reinforced Polymer (GRP)
Superior Flow Characteristics
Applications of GRP Pipes

- **Industrial**
 - Industrial disposal
 - Sea water intake
 - Subsea
 - Fire fighting main
 - Desalination plants
 - Treatment plants

- **Civil**
 - Potable water
 - Surface water
 - Irrigation
 - Sewerage
Specifications

• Diameter (DN): Up to 4000mm (160in)
• Pressure class (PN): Up to 32 bar (464 psi)
• Stiffness (SN): 2500, 5000, 10,000 Pa
Filament Winding Technology
GRP Fittings
GRP Pipe Jointing Systems

Flexible Joints
- Key-Lock Coupling

Cemented Joints
- REKA Coupling
- Bell & Spigot
- Glued Coupling
- Lamination
- Flange
Value Engineering (VE)

- Systematic and structured approach for improving projects, products and process
- VE helps achieve an optimum between function, performance, quality, safety and cost
- The proper balance results in the maximum value for the project
- Value is the reliable performance of functions to meet customer needs at the lowest overall cost

\[
\text{Value} = \frac{\text{Function}}{\text{Cost}}
\]
Value Engineering Process

- **Information gathering**: Defining Objectives & requirements

- **Functional analysis**: Determine important functions or performance characteristics
 - Must haves, like to have, must not haves, prefer not to have

- **Alternative generation**: Determine alternative ways to meet requirements

- **Evaluation**: Assess all alternatives with respect to the defined objectives and costing
Function Analysis for Water or Sewer Transmission Pipelines

We evaluate fifteen different criteria

<table>
<thead>
<tr>
<th>Performance</th>
<th>Design Flexibility</th>
<th>Longevity</th>
<th>Transportation & Cost</th>
</tr>
</thead>
</table>

- Cost of pipes, fittings
- Ease of transportation
- Transportation cost and Time
- Damageability during transportation or installation
GRP Pipe Friction Factor

- Allowable velocity of flow for clean fluid is 6 m/s
- The friction coefficient of GRP pipes remain constant during the pipe’s life

<table>
<thead>
<tr>
<th>Pipe Material</th>
<th>Hazen Williams Coefficient</th>
<th>Manning Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Steel</td>
<td>125</td>
<td>0.013</td>
</tr>
<tr>
<td>Galvanized Iron</td>
<td>120</td>
<td>0.016</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>125</td>
<td>0.012</td>
</tr>
<tr>
<td>Concrete</td>
<td>110</td>
<td>0.014</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>150</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Balancing the Required Diameter

GRP pipes have lower friction factors hence we can use smaller diameter GRP pipes vs. others, e.g. Carbon Steel (using Hazen Williams equation)

\[h = \left[\frac{42.7(Q)}{(C)(D)^{2.63}} \right]^{1.85} \]

ID=500mm
C=110

ID=450mm
C=150
Life Time Requirements

• According to ASTM, ISO & AWWA standards GRP pipes should have a safe service life of 50 years

• Long term tests
 • Pressure, bending, corrosion, creep and erosion

• Short term tests
 • Joint qualification, tensile strength, elastic modules–poisson ratio, drinking water tests, fire test
Other Features of GRP Pipes

- Resistance to internal and external corrosion
 - No Requirement for coating and cathodic protection

- Flexible mechanical properties
 - Different mechanical properties may be obtained by altering resin and composite material (Strength up to 700Mpa)

- Resistance to earthquake
 - Special type of jointing systems are designed
Sample Value Engineering Evaluation Chart

<table>
<thead>
<tr>
<th>No.</th>
<th>Pipe Requirement</th>
<th>Synthetic Material</th>
<th></th>
<th>Metallic Material</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GRP</td>
<td>Score (W)</td>
<td>polyethylene</td>
<td>Score (W)</td>
<td>Steel</td>
<td>Score (W)</td>
<td>Ductile Iron</td>
<td>Score (W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight</td>
<td></td>
<td>Weight</td>
<td>C</td>
<td>Weight</td>
<td>C</td>
<td>Weight</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Distance from pipe production factory to installation site</td>
<td>3.4</td>
<td>1</td>
<td>3.4</td>
<td>2</td>
<td>3.4</td>
<td>3</td>
<td>3.4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Pipes friction factor</td>
<td>5.2</td>
<td>4</td>
<td>5.2</td>
<td>3</td>
<td>5.2</td>
<td>2</td>
<td>5.2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- Potential of damage to pipe during transportations and installation</td>
<td>2.45</td>
<td>2</td>
<td>2.45</td>
<td>2</td>
<td>2.45</td>
<td>4</td>
<td>2.45</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pipe life</td>
<td>12.6</td>
<td>4</td>
<td>12.6</td>
<td>4</td>
<td>12.6</td>
<td>2</td>
<td>12.6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ease of installation and maintenance</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Price of Pipes and Fittings</td>
<td>26</td>
<td>4</td>
<td>26</td>
<td>2</td>
<td>26</td>
<td>3</td>
<td>26</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ability to produce the pipes in various pressure classes</td>
<td>2.15</td>
<td>3</td>
<td>2.15</td>
<td>3</td>
<td>2.15</td>
<td>4</td>
<td>2.15</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Performance against external forces</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ease of transportation</td>
<td>2.75</td>
<td>2</td>
<td>2.75</td>
<td>3</td>
<td>2.75</td>
<td>3</td>
<td>2.75</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Resistance to internal and external corrosion</td>
<td>12.8</td>
<td>4</td>
<td>12.8</td>
<td>3</td>
<td>12.8</td>
<td>1</td>
<td>12.8</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>min. and max. available diameters</td>
<td>1.75</td>
<td>4</td>
<td>1.75</td>
<td>3</td>
<td>1.75</td>
<td>4</td>
<td>1.75</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Non-floatation of pipe in region with high ground water level</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>requirement to special backfilling material</td>
<td>4.3</td>
<td>1</td>
<td>4.3</td>
<td>3</td>
<td>4.3</td>
<td>4</td>
<td>4.3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>mechanical properties of pipe</td>
<td>0.9</td>
<td>3</td>
<td>0.9</td>
<td>1</td>
<td>0.9</td>
<td>4</td>
<td>0.9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>resistance to earthquake</td>
<td>2.8</td>
<td>2</td>
<td>2.8</td>
<td>2</td>
<td>2.8</td>
<td>4</td>
<td>2.8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>After Sales Services</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Operation Cost</td>
<td>4.9</td>
<td>4</td>
<td>4.9</td>
<td>3</td>
<td>4.9</td>
<td>1</td>
<td>4.9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Sum</td>
<td>329.85</td>
<td></td>
<td>248.15</td>
<td></td>
<td>269.15</td>
<td></td>
<td>256.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scores: Excellent (4), Good (3), Fair (2), Poor (1)

The weights are considered according to engineering practices.
South-East Iran Water Transmission Pipeline

- Length: 57km
- Flow requirements: 230km3/day
- Steel pipes were chosen initially
 - Diameter: 1300–2000mm
- Different pressures throughout
 - 6–10bar
- Three pump stations
- Pipejacking under railroad
 - Diameter: 2400mm

- Harsh environmental conditions:
 - High tide fluctuations of more than 2.5m
 - Sludgy conditions
 - High levels of underground water
 - Briny and sandy soil
 - Humidity of 95%
 - Temperatures reaching 60°C
 - Installation at 4.5m below ground
Value Engineering Results

- Initial approach considered steel pipes and shifted to GRP pipes after VE analysis.

<table>
<thead>
<tr>
<th>Pipe Material</th>
<th>Diameter (mm)</th>
<th>Pipe Price ($)</th>
<th>Coating Price ($)</th>
<th>Valve and Accessories Price ($)</th>
<th>Transportation, Installation and Commissioning Prices ($)</th>
<th>Cathodic Protection Price ($)</th>
<th>Total Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRP</td>
<td>1200-1800</td>
<td>8,484,848</td>
<td>-</td>
<td>196,970</td>
<td>3,742,424</td>
<td>-</td>
<td>12,424,242</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>1200-1800</td>
<td>12,664,235</td>
<td>-</td>
<td>196,970</td>
<td>3,754,424</td>
<td>-</td>
<td>16,615,629</td>
</tr>
<tr>
<td>Steel</td>
<td>1300-2000</td>
<td>8,278,158</td>
<td>1,353,380</td>
<td>196,970</td>
<td>7,014,201</td>
<td>289,736</td>
<td>17,132,445</td>
</tr>
</tbody>
</table>

RP pipes resulted in an overall cost savings of 35% compared to
Surface Water Catchment
Tehran Water Surface Collection

• High level of rain in Tehran causes flooding in the south of the city

• Network of 12km collecting water from the city and deliver to Cheetgar lake on the outskirt of the city

• Diameters: 1500-2500

• Required manholes throughout the network
 • Developed GRP manholes specific to the project
Value Engineering Results

- Initial approach considered steel and polyethylene pipes and shifted to GRP pipes.

<table>
<thead>
<tr>
<th>Pipe Material</th>
<th>Diameter (mm)</th>
<th>Pipe Price ($)</th>
<th>Coating Price ($)</th>
<th>Valve and Accessories Price ($)</th>
<th>Transportation, Installation and Commissioning Prices ($)</th>
<th>Cathodic Protection Price ($)</th>
<th>Total Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRP</td>
<td>1500-2500</td>
<td>2,721,612</td>
<td>-</td>
<td>34,291</td>
<td>651,532</td>
<td>-</td>
<td>3,407,435</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>1500-2500</td>
<td>3,495,308</td>
<td>-</td>
<td>34,291</td>
<td>653,532</td>
<td>-</td>
<td>4,183,131</td>
</tr>
<tr>
<td>Steel</td>
<td>1500-2500</td>
<td>2,592,757</td>
<td>461,109</td>
<td>34,291</td>
<td>1,221,128</td>
<td>77,783</td>
<td>4,387,068</td>
</tr>
</tbody>
</table>

RP pipes resulted in an overall cost savings of 24% compared to...
Thank You For Your Attention

ASEAN Contact:
Ali R. Zareh
9th Floor, Syed Kechik Foundation Building
Jalan Kapas, Bangsar
Kuala Lumpur
azareh@excelpipes.com
M: +6(0)19-335-6550