Acoustic Methods for Determining Remaining Pipe Wall Thickness in Asbestos Cement and Ferrous Pipe

Asia Water, 27th March 2012
Mark Nicol, Regional Manager – Asia Pacific
Presentation Outline

• Why do we need condition assessment
• Equipment used & inspection methods
• How the inspection results are used - and the benefits
• Case study: application of the technology in Asbestos Cement and Ferrous piping
The Question At Issue

<table>
<thead>
<tr>
<th>Pipeline 1</th>
<th>Pipeline 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed 1860</td>
<td>Installed 1860</td>
</tr>
<tr>
<td>Brown sandy soil</td>
<td>Brown clay soil</td>
</tr>
<tr>
<td>Moderate soil corrosivity</td>
<td>Moderate soil corrosivity</td>
</tr>
<tr>
<td>Exhumed & sand blasted:</td>
<td>Exhumed & sand blasted:</td>
</tr>
</tbody>
</table>

![Image of pipeline corrosion](image1.png)

![Image of corrosion-free pipeline](image2.png)
A pipe’s lifetime

- Installed defect failure period
- Random failure period
- Degradation related failure period

Bursts per km per yr

Maximum economical failure rate
Methods of pipe assessment

- Direct
 - Visible internal conditions
 - Presence of non-surfacing leaks
 - Material analysis of pipe samples
 - Remaining pipe wall thickness

- Indirect
 - Failure history
 - Water loss rate
 - Flow testing
 - Soil testing
Pipe Wall Thickness

- Direct indicator of structural condition.
- Indicator of level of degradation of the asset.
 - Metallic pipes lose thickness due to corrosion.
 - Asbestos cement pipes lose *effective thickness* by the weakening of the wall as calcium leaches out of the cement due to aggressive waters.
 - Reinforced concrete pipes lose strength as a result of the weakening of the concrete or corrosion-failure of pre-tensioning steel.
Structural Thickness in Cast Iron

Tuberculation and graphitic material cannot bear load.

Remaining structural thickness.
Structural Thickness in Asbestos Cement

- Calcium leaches out of cement in reaction to aggressive waters
- Remaining material cannot bear structural load
- Phenolphthalein dye reveals remaining thickness from samples

![Remaining structural thickness](image-url)
Established Methods to Measure Remaining Wall Thickness

- Pipe sampling programs
 - A sample or coupon is taken every 1 km of pipe
 - Intrusive and disruptive
 - Sample is sand-blasted and measured, and remaining life of entire pipeline extrapolated from sample
 - Exhumed samples may not be representative
 - Difficult to account for local environmental variations
Established Methods to Measure Remaining Wall Thickness

- Inline electromagnetic methods
 - Required instrumentation is sent inside pipes using smart pigs
 - Often requires shutdown of the line, installation of launch & retrieval sites, and cleaning of pipes to remove tubercles and debris
 - Provides a continuous profile of pipe-wall thickness.
 - Data acquisition and analysis are labour and cost intensive
 - Cost and level of disruption are too high to be justified for most pipes
Acoustic Wall Thickness Testing

- Determines the average remaining wall thickness between two points of the pipeline
 - Typically about 100 meters of pipe
- Works on any diameter, most materials
- Completely non-destructive, non-invasive technique
- Direct indication of
 - The current structural strength of the pipe
 - The state of degradation of the pipe
- Can be used to evaluate
 - The fitness for service of the line
 - The remaining useful life
Acoustic Condition Assessment

- A low frequency acoustic pressure wave is induced in the pipe
 - Dominated by a non-dispersive axi-symmetric \((S_1, n=0)\)
- This pressure wave causes pipe wall to “flex” on a microscopic level
- Thicker (and therefore stiffer) pipe walls are more resistant to this “breathing,” causing the wave to travel faster
- Measuring this phenomenon allows calculation of remaining wall thickness
Velocity Equation

Where:

\[v = v_o \sqrt{\frac{1}{1 + \left(\frac{D}{e}\right)\left(\frac{K_{\text{water}}}{E_{\text{pipe}}}\right)}} \]

- \(v \) = propagation velocity of leak noise in pipe
- \(v_o \) = propagation velocity of sound in an infinite body of water
- \(D \) = internal diameter of pipe
- \(e \) = thickness of pipe wall
- \(K_{\text{water}} \) = bulk modulus of elasticity of water
- \(E_{\text{pipe}} \) = Young’s modulus of elasticity of pipe material
Equipment Used

PC-based leak noise correlator
Correlation Theory

- Leaks make noise
- Time of flight technology
- Correlation function:
 - Leak bracketed with 2 Sensors
 - Leak noise takes longer to arrive at Sensor 1 than Sensor 2
 - Correlator measures time difference to identify exact leak location
Typical Correlation: High and Low Frequency
Acoustic Condition Assessment Process

1. Sensor
2. RF Transmitter

PC Based Correlator
Receiver

Noise Source

Monitor the sound waves

D
Technology Implementation

- Average distance 70m to 150m is optimal, can measure from 30m to 300m
- Typically measure between two valves or hydrants
- Can measure 0.75 to 1.5 km per day
- For transmission mains, can vacuum excavate to the crown of the pipe to obtain proper distance
- Average structural integrity between the two locations is obtained
- Pipe sampling may be done to confirm results
Sensor Attachment
Condition Assessment Results

- Presence and location of any leaks
- For each assessment interval:
 - Remaining structural thickness
 - Percent loss from original thickness
 - Qualitative assessment of condition
 - Based on pipes tested & exhumed for validation

<table>
<thead>
<tr>
<th>Wall Thickness Loss</th>
<th>Condition</th>
<th>Color Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10%</td>
<td>Good</td>
<td>Green</td>
<td>minor levels of uniform degradation and maybe some isolated areas with localized degradation</td>
</tr>
<tr>
<td>Between 10% and 30%</td>
<td>Moderate</td>
<td>Yellow</td>
<td>moderate uniform degradation or areas with localized degradation</td>
</tr>
<tr>
<td>Greater than 30%</td>
<td>Poor</td>
<td>Red</td>
<td>significant uniform degradation and numerous areas with localized degradation</td>
</tr>
</tbody>
</table>
What it tells you

<table>
<thead>
<tr>
<th>Pipeline 1</th>
<th>Pipeline 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed 1860</td>
<td>Installed 1860</td>
</tr>
<tr>
<td>Brown sandy soil</td>
<td>Brown clay soil</td>
</tr>
<tr>
<td>Moderate soil corrosivity</td>
<td>Moderate soil corrosivity</td>
</tr>
<tr>
<td>Test Results: 31% thickness loss</td>
<td>Test Results: 1% thickness loss</td>
</tr>
<tr>
<td>Condition Prediction: Poor</td>
<td>Condition Prediction: Good</td>
</tr>
</tbody>
</table>
Benefits of External Acoustic Pipe Wall Assessment

- Cost Effective
- Accurate & Proven
- Easy to Employ
- Actual data on physical pipe condition
- Negligible Risks
- Non-destructive
- Leak detection is part of the assessment
Case study: Applying the Technology in Asbestos Cement Piping

- Many US utilities faced with significant amounts of AC pipe nearing design life
- Cost of replacement is inflated by need to follow asbestos handling regulations
- Preferable to leave in service so long as it remains in good condition
Stage 1: Pilot project Field Testing
Stage 2: Validation of results

<table>
<thead>
<tr>
<th>Line 1</th>
<th>Line 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echologics assessment: < 5% thickness loss</td>
<td>Echologics assessment: 38% thickness loss</td>
</tr>
<tr>
<td>Actual conditions:</td>
<td>Actual conditions:</td>
</tr>
<tr>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
Las Vegas, NV: Excavated Pipe
Results of 24” lab testing
Stage 3: Make use of results

- Acoustic wall thickness measurements agree with destructive physical tests
- Pilot included 10 miles budgeted for removal
 - Found 2.5 miles of this to be in excellent condition
 - Savings to utility of over $2M
Stage 4: Systematic Program

- Include wall thickness in replacement prioritization model
- Network-wide assessment of AC pipe wall thickness and leakage
- Depending on size of network, and available funds, surveys may be spread over several years
Hamilton, Ontario: Pilot

- Tests performed at city water distribution system
 - 10 test sites selected
 - 5 suspected in poor condition based on statistical indicators (burst rate, age, etc.)
- Sites included large and small diameter cast iron pipes at different levels of deterioration
- Deterioration level judged on break history, pipe age and soil corrosiveness
- Selected pipes installed between 1860 and 1960
- Accuracy of remaining thickness predicted based on visual appearance and average wall thickness of exhumed samples
Exhumed as-found samples at site 3
Exhumed as-found samples at site 3
Pipe from site 3 after sand blasting
Summary: External Acoustic Condition Assessment

- Average wall thickness over ~100m intervals
- Reflects structural strength of pipe
- Non-destructive, non-intrusive method
- Survey-level technology, for network-wide application
- Leak detection performed concurrently
- Can be used to calculate remaining useful life
Q & A